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Abstract

Automatic image enhancement is an extremely relevant
problem in a world where the number of produced pic-
tures and the need for high-quality post-production modi-
fications are enormously increasing. Convolutional neural
networks have open the possibility to get to a level simi-
lar to the one of human experts. However, there is still
no clear decision about the best setting for training these
models in terms of both network architecture and loss func-
tion. Moreover, human experts directly leverage contextual
and semantic knowledge about a picture when enhancing
it. In this work, we empirically evaluate common architec-
tures and loss functions employed for automatic image en-
hancement, and propose an effective architecture-agnostic
method for integrating additional contextual information
into the enhancement process. We evaluate the method on
the MIT-Adobe Fivek dataset and show its benefits.

1. Introduction

In the last years the number of pictures taken every day in
the world has grown dramatically, mostly because of easily
accessible mobile cameras present in modern smartphones.
Users and companies have rising desire to enhance the qual-
ity of their photos of interest. However, proper use of the
tools that are included in common post-production software
requires considerable expertise, and the number of individ-
uals possessing it is not able to satisfy the outstandingly in-
creasing demand.

While even complex combinations of classical enhance-
ment algorithms — such as histogram equalization — lack
the generality of the transformations that experts can per-
form, recent progress in approaches based on convolutional
neural networks [16, 17] paved the way to imitate their end-
to-end enhancing process. Nonetheless, many problems are
still unsolved.

Due to the existence of several architectures potentially
able to excel at the task, and of multiple loss functions to
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be chosen for optimization during the learning procedure,
there is no consensus on which the best approach could be.
Recent efforts [8, 6] showed approaches based on genera-
tive adversarial networks [12] can yield good results; how-
ever, training of such models can have stability issues, and
can potentially obscure the actual difference in performance
among different architectural choices.

Another open issue is the proper integration of side or
semantic information about a picture into the end-to-end
process that is trying to enhance it. Human experts uncon-
sciously extract this knowledge: for instance, they detect
which is the lighting condition or the subject of a picture
while they plan how to improve it. This and other informa-
tion is often available for existing pictures (e.g., in the form
of tags for data that have been uploaded online) or can be
easily produced using existing methods for semantic seg-
mentation or image classification.

The main contributions of this work are:

e An empirical evaluation of state-of-the-art loss func-
tions and architectures for deep learning-based image
enhancement.

e A simple and architecture-agnostic method for inte-
grating information such as tags and scene parses di-
rectly into the enhancement process.

2. Related work

The task of image enhancement using convolutional neu-
ral networks has been addressed in multiple ways. In this
work, we consider a specific enhancement class, the one
of enhancements produced by experts manually modifying
a picture with a software. However, more classical forms
of enhancement exist, such as denoising or super-resolution

[7].

Deep image enhancement. [37] and [5] demonstrated
that modern convolutional architectures trained with proper
loss functions can approximate complex image processing
operators and speed up their computation. Other work [27]



uses a learned measure of image quality as loss function for
tuning operators. In [13], a combination of adversarial and
non-adversarial losses is used for transforming low-profile
camera pictures into their high-end counterpart.

Model conditioning. Attempts to integrate semantic in-
formation into the enhancement process have been of var-
ious types. [35] and [22] employ, respectively, manually
defined features and convolutional neural networks to inte-
grate scene parsing into the learning process; [29] makes
use of semantic maps for the related tasks of harmonization
of image composition. Our approach to model condition-
ing is different to the one used by previous work on image
enhancement, and is instead similar to the one of [23], that
achieved significant results in tasks such as conditional im-
age generation [2, 18] and style transfer [10].

3. Deep Image Enhancement

We frame image enhancement as a supervised learning
problem. Given an image x and its enhanced version vy,
we are interested in obtaining an estimate §j = £(x; 6) that
matches the reference enhanced image as much as possi-
ble. & is a learned enhancement operator of parameters
6, that we model using different classes of deep convolu-
tional neural networks. £ can also use some contextual in-
formation c as additional input and compute the estimation
as g = E(x,c;0).

This is of course a restrictive view of the general en-
hancement task: multiple, equivalently satisfying ways ex-
ist for enhancing a single image. Model classes that take
explicitly into account this multimodality [I, 26] can be a
proper choice, but they are usually more impractical to op-
timize. We find the supervised objective to be a surpris-
ingly good mirror to learn image enhancement: even if it is
explicitly encouraged to imitate observed transformations,
models supervisedly trained on enough high-quality data
usually learn flexible and general enhancement mappings.

3.1. Architectures

A convolutional neural network (CNN) is an artificial
neural network that employs convolution in place of affine
transformations before the application of a nonlinearity.
The activation a! for the i-th channel of the I-th layer of
a modern CNN is typically of the form:

= h(BNL(b, + > al '« K ))) )
J

where K ! ; 1s a parameterized kernel to be convoluted with
the j-th act1vat10n generated by the previous layer, bl is a
bias term and h is a nonlinear activation function, typically a
Rectifier Linear Unit [21] or a variation of it [34]. BN is the
batch normalizaiton [14] operation, known for alleviating

internal covariate shift and computed on the pre-activations
a of a layer as

BN!(a}) = ~lz + g (2)
considering the z-scores 2! of the preactivations in a batch.
At inference time, running averages of mean and standard
deviation, kept during training, are used for computing the
required z-scores. In this work, we considered and evalu-
ated two standard architectures for image-to-image dense
predictions tasks. In the context of image enhancement,
global information is particularly useful. Hence, architec-
tures must feature a sufficiently large receptive field, de-
fined as the portion of input that influences the activation of
a layer.

Unet. Unets [25] were conceived for image segmentation
and achieve a large receptive field by using an encoder-
decoder architecture. The encoder part of the model com-
putes an increasingly small representation of the input,
downsampling it through a sequence of convolutional and
max-pooling [20] layers; after a bottleneck, a decoder pro-
gressively brings the resolution of the activations to the one
of the input, by using a form of upsampling (e.g., bilinear)
and convolution. To counterbalance the loss of informa-
tion due to the use of max-pooling in the encoder, Unets
make extensive use of skip-connections, directly offering
activations computed in the encoder as input to the layers
of the decoder. In practice, feature maps coming from the
down-stream and the up-stream of the model are combined
by channel-wise concatenation.

CAN. Context Aggregation Networks (CANs) [36], orig-
inally developed for semantic segmentation, make use of a
different approach for enlarging their receptive field. The
activations computed at any layer share the same resolution
as the original input and the output. The context (i.e., recep-
tive field) considered in each layer is aggregated at an expo-
nentially increasing size with respect to depth. To achieve
this, intermediate layers employ non-unitary dilation for the
convolution operation. Namely, dilated convolution with di-
lation d is defined as:
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Dilation is increased exponentially such that, after a block
of dilated convolutions is started, dilation at depth [ will be
d = 2. Dilation is unitary for first and last layers. The num-
ber of channels of the convolutional layers is kept constant
to a number of 32 (CAN32), for the entire neural network,
and reduced to the same as the input with a 1 x 1 convolution
at the output layer. To keep the resolution of the intermedi-
ate outputs of the network the same as the input, appropriate
zero-padding is added as a function of dilation and of the
kernel size fixed at a value of 3 x 3.

—dr)K! (1) (3)



3.2. Loss functions

The loss that is used to optimize the model plays a crucial
role in image enhancement. A multitude of loss functions
have been considered in previous work and we compared
six of them in order to better understand their difference in
relative performance.

Typical choices are the pixel-wise Mean Squared Error
(MSE) and Mean Absolute Error (MAE). The former is de-
fined as: ]

Luise(9:y) = 7 > (i — i) “4)
where [V is the number of pixels in the two images. The
latter is instead defined as:
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Although the MSE is a standard choice in many settings
for statistical prediction and machine learning, its use is of-
ten discouraged for dense prediction tasks such as image-to-
image translation or image enhancement [31]. It is, in fact,
more tolerant to small errors and can easily yield blurry im-
ages. The MAE is instead more appropriate to this family
of tasks, and can induce the production of shrper images.

Both the previously presented losses completely ignore
the perceived image quality of the estimated image, the piv-
otal motivation behind the image enhancement task. There-
fore, in this paper we consider other losses that explicitly
consider image quality as perceived by humans.

According to Webers law [ | 1], the human visual system
is more sensitive to light and color variations in homoge-
neous regions. Drawing from this fact, the structural simi-
larity SSIM index [32] considers the structural information
of a reference image as carried by three components: [u-
minance, contrast and structure. These quantities are com-
puted across local patches of size N over the estimated and
ground truth images, and then compared and combined to
obtain a similarity measure. A multiscale version of SSIM
(MS-SSIM) [33] simulates different spatial resolutions by
weighting the values of the SSIM components at different
scale. A simplified version of the index considered in this
work takes the form of:

(24 py + C1) 209y + Co)
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SSIM(3, y) = (6)

where ¢ and y are the original and reference image signal
respectively and SSIM(7,y) < 1. The luminance y for a
generic image x is the mean intensity of the pixel values in
the patch:
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while the contrast o is estimated as the standard deviation:
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Since the index is bounded the loss is computed as:

Lssm(9,y) = 1 — SSIM(7,y) 9

Another loss function that takes into account perceptual
considerations is the one proposed by [27]. It is made up
of two terms, f(-) and ¢(-), respectively measuring fidelity
to the input image and absolute quality of the enhanced im-
age:

Lamva = f(y,9) +va(9) (10)
~ is the relative importance of the quality term. ¢ is com-
puted using neural image assessment NIMA [28], a no-
reference quality index. It relies on a CNN trained on the
AVA dataset [19], to learn aesthetic preferences of human
raters, predicting quality ratings for images on a scale from
0 to 10. The quality term in the loss is then computed as
g = 10 — NIMA(&(x)). The fidelity function f is instead
implemented as a pixel-wise loss such as Lysg or Lyag.

3.3. Conditioning by feature-wise modulation

Feature-wise modulations [9] are a general way to intro-
duce additional information, or condition, into the computa-
tional flow of an artificial neural network. The idea behind
these techniques is to modify a representation by using a
parameterized affine transformation, whose parameters de-
pend on the condition to be introduced into the network.
The particular form of feature-wise modulation we employ
is conditional batch normalization, consisting in the appli-
cation of the linear modulation [23] on the z-scores obtained
by normalization of pre-activations:

CBN(a}) = ~!(c)z + Bl(c) (11)

The condition c can in this way up or down-regulate some of
the feature maps, depending on the value of additional con-
tinuous or categorical (e.g., classes) features. In the pres-
ence of categorical features, the transformations v and g are
effectively embeddings from discrete to continuous values.
In this work, we consider the case in which multiple cate-
gorical features are available: we obtain v and /3 as a con-
catenation of the properly sized embeddings of the different
features. If, for instance, we have 3 categorical features, the
sizes of the embeddings will be such that [vy1; ;3] has
length equal to the number of channels used in the convolu-
tional layer.

This type of model conditioning is architecture-agnostic:
we simply substitute the standard batch normalization used
in intermediate layer of Unet and CAN32 with the corre-
spondent conditional batch normalization, and feed the cat-
egorical features c as additional input to the network.



4. Experiments

We performed two sets of experiments, as presented in
the introduction of the paper.

The first set had the objective to measure the relative
performance of two architectures — Unet and CAN32 —
and six loss functions. The loss functions we investigated
are L:MSE; EMAE, £NIMA (Wi'[h either £MAE or LMSE as fi-
delity function) and a uniform combination of Lyag With
Lssiv- We additionally considered the Lcoror from [13],
consisting in the Euclidean distance between the Gaussian
smoothed versions of target and estimated images, and used
a combination of Lssim + pLcoLor With g = 0.00001.

In the second set of experiments we tested whether the
addition of contextual information by conditional batch nor-
malization is beneficial for the task of image enhancement.
Thus, we simply substituted all batch normalization opera-
tions with an equivalent conditional batch normalizations in
the upsampling branch of the UNet and in all the interme-
diate layers of CAN32, and provided, for each image, side
categorical features as input. We employed Lyag+ssiv as a
loss function, being it one of the most promising according
to the first set of experiments.

Dataset. We used the MIT-Adobe FiveK Dataset [3] for
training all the models. The dataset features 5000 pro-
fessional photographs in RAW format, taken from several
DSLR cameras and featuring a diverse set of scenes, sub-
jects, and lighting conditions. For each image in the dataset,
five tone-adjusted versions modified by trained experts are
provided. Moreover, information about subject, light, loca-
tion and time of the day in which the picture was taken is
available in the form of categorical features, that we inte-
grated into the training process as highlighted in previous
sections.

We employed PNG versions of the original RAW images
and choose modifications executed by the third expert as
ground truth. Although the models we employed are fully
convolutional and can thus handle multiple input sizes, we
scaled the images of the dataset to facilitate the use of batch-
ing during training. We used a resolution of 332 x 500 and
500 x 332 for portrait and landscape images respectively
and fed batches from the two categories in random order
during training. We reserved 20% of the available images
for testing and evaluation.

The data has been normalized in the range [—1, 1] for all
training and evaluation procedures except for specific pre-
trained models that required other normalization schemes
(i.e., NIMA).

Experiments setup. For all the experiments, we em-
ployed standard Unet and CAN32. The version of CAN32
has fewer layers than the one used in other work [5], since

we need a smaller receptive field for our lower resolution
images. We used the Unet as presented in [25], with the sole
addition of batch normalization before any activation. The
exact architecture we used for CAN32 is shown in Table 2.
We adopted ReLU and LeakyReLU with @ = 0.2 as non-
linear activation functions for layers of Unet and CAN32
respectively.

Optimization of all models was done using Adam [15]
with 81 = 0.9, B2 = 0.999 and a learning rate of 0.0002.
For Lnmvma we adopted v = 0.001. We trained all models,
both conditioned and unconditioned, for 50 epochs with a
batch size of 8.

Results and discussion. Results of the evaluation carried
out on the test data for different combinations of losses and
models are shown in Table 1. Although there is no huge
prevalence of an architecture over the other, the UNet per-
forms generally better at minimizing the prescribed the loss,
and the observed average quality is better than the one ob-
tained by CAN models. Nonetheless, the UNet suffers from
some pathological conditions induced by particularly bright
spots in images, as can be observed in Figure 1. An advan-
tage of the UNet architecture concerns training time: we
observed that, despite a number of parameters of more than
one million, compared to about 50K of CAN32, there is a
significant advantage — a proportion of about 1:5 — in re-
quired training time per batch. This is mostly caused by the
nature of dilated convolution.

Concerning losses, we found models trained by using
Lssiv and its variations produce outputs that are particularly
pleasing from an aesthetic point of view and more resilient
to artifacts.

Given the second set of experiments, we observed that,
given same architecture, loss function and hyperparameters,
contextual information used by conditioned models is of-
ten beneficial, especially in the case of outdoor images, as
shown in Figure 2 and Figure 3. Moreover, adding this ad-
ditional information consistently alleviates the bright-spot
problem of UNet models.

5. Conclusion

In this work, we evaluated a number of architectures and
loss functions for the task of supervised image enhancement
using convolutional neural networks. We highlighted some
advantages and drawbacks of the different combinations
and reported some of the problems affecting existing archi-
tectures. We proposed a solution for integrating external
contextual features into the enhancement process through
simple layer-wise modulation, improving the results and al-
leviating some existing problems.

Future work can strive towards the open problem of
quantitative evaluation of visual quality, relevant for both



Figure 1. Image enhanced using all loss functions and models. Models from top to bottom: CAN32 and UNet. Loss functions from left to

right: Lcolor+ssiv, LMAE, LMAENIMA, LMaE+ssiM, Lmse and LMsE+NIMA -

Figure 2. Results obtained using a Lyvag+ssiv loss function. From left to right: Original image, Output from CAN32, Output from CAN32
conditioned by contextual information. The conditioned model performs better especially in outdoor images, as shown by the improved

color of the subject and the vegetation.

image enhancement and related tasks such as image gener-
ation. We carried out a survey about preferences over im-
ages generated by the different models we presented, but we
obtained inconclusive results, mainly due to the difficulty of
evaluating a total of 12 architecture/loss combinations at the
same time. Another interesting direction is the extension of
this work to the use of semantic segmentation information.
We carried out some experiments on the use of maps gen-
erated by existing networks trained for semantic segmenta-
tion, leveraging the same simple conditioning mechanism
we used with contextual features, but did not reach satisfy-
ing results. We think this kind of side information can be
particularly beneficial in the case of adversarial training, as
shown, for instance, in recent approaches presented for the
task of video generation [4, 30].

A. Experiments on learning adaptive his-
togram equalization

A preliminary experiment to gain some insight about im-
age enhancement was carried out on the CIFAR10 dataset.
The task consisted in learning a traditional image-to-image
transformation. In particular, we focused on a variation of
adaptive histogram equalization called CLAHE [24], which
performs histogram equalization over patches, putting a
limit on contrast to avoid noise amplification. We trained
three simple architectures using Lysg, namely a Multilayer

perceptron working on the stretched image, a LeNet-like
[17] convolutional neural network and a small UNet with
skip connections.

Although the very small resolution (32 x 32) of the im-
ages in CIFARI10 did not allow any meaningful visual in-
spection, we found that, even in such a simple task, the
skip-connections employed by the UNet, that reports the
best performance on the test set in terms of Lysg, are ex-
tremely beneficial. This offers an hint on why this kind of
architectures are widely employed for learning image-to-
image transformations.



Figure 3. Results obtained using a Luvag+ssiv loss function. From left to right: Original image, Output from Unet, Output from Unet
conditioned by contextual information. In the highlighted areas, it is shown that the conditioned model is able to correctly enhance
particularly bright areas, that instead induce artifacts for the unconditioned model.

Model Lviag Lvse Lmaesssiv Lcororessiv LmaNiMa  LMSE+NIMA
CAN32 0.1414 0.0463 0.5102 0.4530 0.0443 0.0451
UNet 0.1421 0.0364 0.4676 0.4239 0.1429 0.0414

Table 1. Results obtained for the analyzed model-loss pairs.

Layer 1 2 3 4 5 6 7 8
Convolution 3x3 3x3 3x3 3x 3 3x 3 3x 3 3x 3 Ix1
Dilation 1 2 4 8 16 32 1 1
Receptive Field 3x3 7x7 15x 15 31x31 63x63 127x 127 129x 129 129x 129
Nonlinearity v v v v v v v X
Channels 32 32 32 32 32 32 32 3

Table 2. Specification for the CAN model.
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